Reactions of organotin tetrazoles: synthesis of functionalised poly-tetrazoles

Paul A. Bethel, Michael S. Hill, Mary F. Mahon and Kieran C. Molloy*

Department of Chemistry, University of Bath, Claverton Down, Bath, UK BA2 7AY. E-mail: chskcm@bath.ac.uk

Received (in Cambridge, UK) 2nd July 1999, Accepted 29th September 1999

Reaction of 1,2-bis[2-(tributylstannyl)tetrazol-5-yl]benzene with 1,2-dibromoethane (1:10) yields the 1-N,1-N'-ethylene bridged cyclophane (1) while similar reactions with larger excesses (1:25) of 1,n-dibromoalkanes yield 1,2-bis[2-(bromoalkyl)tetrazol-5-yl]benzenes along with the unsymmetrical 1-N,2-N-substituted tetrazole isomers. Analogous products from 1,3-(Bu₃SnN₄C)₂C₆H₄ are also reported. Similar reactions occur between the two organotin compounds and 1-bromo-n-cyanoalkanes to give 1,m-bis[(cyanoalkyl)tetrazol-5-yl]benzenes (m = 2, 3) as both symmetric and unsymmetrically substituted tetrazole isomers, and which can be further developed to convert the pendant nitriles into tetrazoles by cycloaddition reactions with Bu₃SnN₃. The Bu₃Sn group is easily cleaved by H⁺ to generate the related N-unsubstituted tetrazoles.

Introduction

The synthesis of tetrazoles from the cycloaddition reaction between an azide and a nitrile is well established.^{1,2} We have been investigating the use of organotin azides in this respect as such species react readily with nitriles considered to be poor dipolarophiles *e.g.* alkyl nitriles. Moreover, the resultant metallated heterocycles adopt a range of complex supramolecular structures in which five coordinate R₃SnN₂ units link the tetrazoles into layers,³ two-dimensional networks of hexamers [1,3,5-(Bu₃SnN₄C)₃C₆H₃, 1,3,5-(Bu₃SnN₄CCH₂CH₂)₃CNO₂],⁴ bilayers [1,6-(Bu₃SnN₄C)₂(CH₂)₆]⁵ and interpenetrating 3-D networks *e.g.* 1,2,4,5-(Et₃SnN₄C)₄C₆H₂·2H₂O.⁶

As part of our interest in tetrazoles in general we have looked at the use of organotin tetrazoles as precursors to new, functionalised poly-tetrazoles which can be used in other areas of synthesis. For example, protonated poly-tetrazoles could be used as acidic ligands toward other metals which themselves form unstable azides and are hence unsuited to direct synthesis *via* cycloaddition reactions. Macrocyclic poly-tetrazoles have also been reported by Butler *et al.* whose synthetic strategy also involved the stepwise elaboration of simpler functionalised tetrazole starting materials.⁷ To this end, we now report on various aspects of the reaction of 1,2and 1,3-(Bu₃SnN₄C)₂C₆H₄ with H⁺, α, ω -dibromoalkanes and α -bromo- ω -cyanoalkanes.

Results and discussion

Reactions with α,ω-dibromoalkanes

Alkylation of 5-substituted mono-tetrazole derivatives is known to lead to mixtures of 1-*N*- and 2-*N*-substituted products,⁸ the regiospecificity being dependent on the reaction conditions and the nature of the *C*- and *N*-substituents. Alkylation of *N*-metallated tetrazoles (Au,⁹ Co,¹⁰ SnR₃¹¹) with MeI or Me₂SO₄ has been found to yield predominantly (90%) 1,5disubstituted tetrazoles [reaction (1)].

Reaction of 1,2-(Bu₃SnN₄C)₂C₆H₄ with a ten-fold excess of 1,2-dibromoethane in methanol leads to the formation of 1 in 37% yield (Scheme 1). The ¹H and ¹³C NMR spectra of 1 each

Scheme 1

show a single methylene resonance at 5.08 and 45.9 ppm, respectively. These values are characteristic of substitution at N^1 of the tetrazole ring,⁸ as is the single resonance of the quaternary tetrazole-C⁵ at 153.2 ppm. The overall simplicity of the aromatic regions of the spectra confirm this symmetrical pattern of substitution. The identity of **1** as a 1-*N*,1-*N'*-intramolecularly-bridged tetracyclic species rather than a larger macrocycle involving intermolecular bridges has been confirmed crystallographically, though the crystal chosen proved to be anhydrous rather than the monohydrate suggested by the microanalysis. The structure of the cyclophane **1** is shown in Fig. 1 and can be compared with three related structures (**Ia**-**c**).^{12,13} In all four structures the two tetrazoles are twisted in

relation to the central ring (1: 45.5° , 50.7° ; Ia: 58.5° , 38.3° ; Ib: 7.7° , 85.6° ; Ic: 51.1° , 47.8°). The dihydrate Ib is most unsymmetrical due to the involvement of only one tetrazole in a network of hydrogen bonds, while 1 appears most symmetrical, presumably due the lack of rotational freedom which comes

J. Chem. Soc., Perkin Trans. 1, 1999, 3507–3514 3507

This journal is © The Royal Society of Chemistry 1999

with the shorter trans-tetrazole bridge. The ethylene bridge in **1** is the shortest yet incorporated into this family of heterocyclic cyclophanes and includes the first example of 1-N,1-N'-bridging. Cyclophanes **Ia**, **Ib** are examples of the more common 2-N,2-N'- and 1-N,2-N'-substitution patterns.

When a large excess (25:1) of α, ω -dibromoalkanes is employed however, bis(bromoalkytetrazolyl)benzenes **2a,b**– **11a,b** are produced (Scheme 2). Two major products, the 2-*N*, 2-*N'*- (**a**) and 1-*N*,2-*N'*-substituted (**b**) isomers, are formed in these reactions, though in some instances (**3**, **10**, **11**) the latter isomer, although suggested by TLC, was formed in too small a quantity to be isolated on a preparative scale. Typically, the 2-*N*,2-*N'*-isomer is seen to predominate in a ratio of *ca*. 3:1. More rigid substituents *e.g.* bromo-substituted *m*-xylyl (**12**) can be introduced in a similar manner. Compounds **10–12** have recently been prepared by Butler and Fleming from the

Fig. 1 The asymmetric unit of 1. Thermal ellipsoids are at the 30% probability level.

N-unsubstituted tetrazoles and the appropriate dihaloalkane in the presence of Et_3N ; yields of the minor 1-*N*,2-*N* isomer were of the order of 5%.¹⁴

The isomeric 2-N,2-N' and 1-N,2-N' derivatives 2-11 are readily distinguishable from their respective ¹H and ¹³C NMR spectra. Methylene groups attached to N¹ are more shielded by ca. 0.15–0.35 ppm in the ¹H spectra and by 4–6 ppm in the ¹³C spectra relative to their N²-substituted counterparts.⁸ Thus the symmetrical 2-N,2-N'-substituted compounds reported here show a single resonance at ca. 4.50 and 53.0 ppm in the ¹H and ¹³C spectra respectively, attributable to the equivalent $-CH_2N^2$ and $-CH_2N^{2\prime}$ resonances. On the other hand the unsymmetrical derivatives show additional signals at ca. 4.10 and 47.0 ppm arising from the -CH₂N¹ grouping. Such differences in chemical environment are also transmitted down the length of the tetrazole-bonded alkyl chain, so that the spectra of the unsymmetrically-substituted compounds are more complex, with, in most cases, a separate signal resolvable for each individual methylene group of the two bromoalkyl substituents. In contrast, the symmetrically-disposed 2-N,2-N'substituted derivatives show half the number of methylene resonances because of the chemical equivalence of the chains. The ¹³C chemical shift of the tetrazole C⁵ atom also differs significantly in 1,5- and 2,5-disubstituted tetrazoles, appearing at ca. 155.0 and 162.0 ppm respectively.8 The symmetrical 2-N,2-N'-substituted compounds thus give rise to a single resonance corresponding to the second of these possibilities while both signals are apparent in the 1-N,2-N'-substituted compounds.

These structural assignments are unequivocally confirmed by the X-ray crystallographic study of the 2-*N*,2-*N*'-substituted **6a** (Fig. 2).

Reactions with α-bromo-ω-cyanoalkanes

Similar methodology to that described above can be employed to introduce nitrile-terminated substituents, which can in turn be elaborated into additional tetrazole functionalities. Thus, excess 1-bromo-3-cyanopropane reacts with 1,3-bis[2-(tributyl-stannyl)tetrazol-5-yl]benzene³ to yield **13**, which can subsequently be converted to **14** by a cycloaddition reaction with Bu₃SnN₃. The Mössbauer spectrum of **14** has a quadrupole splitting (qs) of 3.70 mm s⁻¹, typical of *trans*-N₂SnR₃; recrystallisation of **14** from methanol afforded **14**·2MeOH whose qs is

Scheme 2

Scheme 3

Fig. 2 The asymmetric unit of **6a**. Thermal ellipsoids are at the 30% probability level. The planes of the tetrazole rings are each twisted 13.2° with respect to the plane of the phenyl ring. Primed atoms are related to their unprimed analogues by the two-fold axis along the C(4)–C(7) vector.

somewhat reduced (3.50 mm s⁻¹) and thus suggests that methanol coordinates tin in one of its axial sites, in preference to intermolecular coordination from a tetrazole nitrogen. We have previously determined the structure of the related bis-methanol solvate 1,3-(Bu₃SnN₄C)₂C₆H₄·2MeOH which incorporates the suggested tin–solvent coordination.³

Compound 14 reacts further with $Br(CH_2)_3CN$ to give 15, an orange oil, in 8% yield after purification by column chromatography (Scheme 3). The 2-*N*,2-*N'*-substitution pattern was difficult to verify by ¹H NMR due to the two different, but closely related NCH₂-environments. In the ¹³C NMR, however, only two NCH₂ signals are seen (51.2, 52.3 ppm) indicative of two pairs of 2-*N*,2-*N'*-substituted tetrazoles. Further confirmation comes from the appearance of two signals due to C⁵ of the tetrazole at positions (164.6, 165.4 ppm) more typical of 2-*N*, 5-*C* than 1-*N*,5-*C* substitution (see above). Nitrile carbons were seen at 118.0 ppm, and the nitrile group confirmed from the ν (CN) at 2249 cm⁻¹ in the infrared spectrum.

The build-up of multi-functional tetrazoles by the sequential introduction of pendant nitriles onto preformed tetrazoles is apparently more facile than the alternative of introducing pendant azide groups. Thus, **16**, synthesised from Bu₃SnN₃ and

 NCCH_2N_3 ¹⁵ failed to react with malononitrile at 180 °C over an hour. Clearly, the organotin-activated azides are more reactive in the cycloaddition reaction than alkyl azides.

Cleavage reactions

The cycloaddition between Bu_3SnN_3 and RCN affords a facile route to novel tetrazoles, which can be isolated in their nonmetallated (N–H) form by reaction with HCl. Three phenyleneand one methylene-bridged bis(*N*-unsubstituted tetrazoles) (**17–20**), which have previously been cited with respect to polymerisation reactions,¹⁶ have been prepared this way (Scheme 4). For comparison, **14** was cleaved to give **21**, characterised as the 2-*N*,2-*N'* isomer by the ¹³C shifts of the NCH₂ (54.2 ppm) and C⁵ (166.6 ppm) groups. The ¹H NMR has a single resonance due to the two equivalent NCH₂ groups at 4.89 ppm.

These N-unsubstituted tetrazoles are often solvated, either from the crystallisation solvent (MeOH) or from atmospheric moisture, and slow crystallisation of 17 yielded crystals of a tetrahydrate (Fig. 3). The two tetrazole units are each twisted

Fig. 3 The asymmetric unit of 17. Thermal ellipsoids are at the 30% probability level.

Scheme 4

with respect to the central C_6H_4 ring (34.1°, 34.8°) to allow both heterocycles to engage in extensive hydrogen bonding. The NH groups form the strongest H-bonds [H(1)–O(2) 1.71(2), H(2)– O(1) 1.69(2)Å], with weaker H-bonds forming from nitrogens in the N³ and N⁴ positions of each ring [N(1)–H(4B) 2.03(2), N(2)–H(2A) 1.90(2), N(5)–H(3A) 2.00(2), N(6)–H(1B) 1.93(2) Å]. The incorporation of two additional water molecules into the lattice generates a network of H-bonds (Fig. 4). There is π -stacking of the benzenoid units of adjacent molecules with tetrazoles arranged on alternating sides of the stack. The two water molecules directly H-bonded to the N–H groups [based

Fig. 4 A stereoscopic view of the unit cell contents of **17** showing the network of hydrogen bonds. Angles between the tetrazole rings and the central C_6H_4 unit are 34.1 and 34.8° for rings based on N(1) and N(5), respectively.

on O(1) and O(2)] are each three-coordinated, the available hydrogens bonding either to a ring nitrogen [H(1B)–N(6), H(2A)–N2] or one of the "guest" waters [H(1A)–O(4) 1.86(2), H(2B)–O(3) 1.90(2) Å]. Each of the "guest" waters is four-coordinated, in which the hydrogen atoms H-bond to either nitrogen [H(3A)–N(5), H(4B)–N(1)] or another water [H(3B)–O(4) 1.86(3), H(4A)–O(3) 1.86(3) Å]. The lone pairs on these four-coordinated oxygens form further H-bonds to other water molecules [O(3)–H(2B), O(3)–H(4A); O(4)–H(1A), O(4)–H(3B)].

The structure emphasises the versatile nature of tetrazoles in crystal engineering. Our earlier work on metallo-tetrazoles has unearthed one compound, $1,4-(Ph_2TIN_4C)(CH_2)_4$,¹⁷ in which all four ring nitrogens of each tetrazole are involved in bonding, though the N¹,N³,N⁴ combination inherent in **17** appears one of the most common.

Conclusions

Cleavage of the organotin groups from 1,n-(Bu₃SnN₄C)₂C₆H₄ (n = 2,3) with α,ω -dihaloalkanes can yield 1-N,1-N'-bridged cyclophanes (1,2-Br₂C₂H₄) or, when the dihalide is in large excess, mixtures of 1-N,2-N'- and 2-N,2-N'-substituted ω -haloalkyltetrazoles. The use of α -halo- ω -cyanoalkanes can generate mixtures of 1-N,2-N'- and 2-N,2-N'-substituted ω -cyanoalkyltetrazoles from which further tetrazoles can be generated by reaction with Bu₃SnN₃. All the organotin-substituted tetrazoles are easily converted to their *N*-unsubstituted analogues by reaction with HCl.

Experimental

Spectra were recorded on the following instruments: JEOL GX270 (¹H, ¹³C NMR), GX400 (¹¹⁹Sn NMR), Perkin-Elmer 599B (IR). Details of our Mössbauer spectrometer and related procedures are given elsewhere.¹⁸ Isomer shift data are relative to CaSnO₃. For all compounds, infrared spectra were recorded as Nujol mulls on KBr plates and all NMR data were recorded on saturated solutions. The numbering scheme used in the assignment of NMR data is shown below.

Syntheses

1,2-(Bu₃SnN₄C)₂C₆H₄ (22), 1,3-(Bu₃SnN₄C)₂C₆H₄ (23), 1,4-(Bu₃SnN₄C)₂C₆H₄ (24) and (Bu₃SnN₄C)₂CH₂ (25) were prepared as described previously.^{3,5} All other reagents were of commercial origin (*e.g.* Aldrich) and used without further purification.

CAUTION: Owing to their potentially explosive nature, all preparations of and subsequent reactions with organotin azides were conducted under an inert atmosphere behind a rigid safety screen.

9,10-Dihydroditetrazolo[5,1-a:1',5'-e][2,5]benzodiazocine

(1). Compound 22 (1.75 g, 2.2 mmol) was refluxed with 1,2dibromoethane (4.1 g, 22.0 mmol) in methanol (50 ml) for three hours. *In vacuo* removal of solvent from the colourless solution yielded a glass which was triturated with hexane to afford a colourless powder which was collected by filtration. Compound 1 was isolated as colourless needles by fractional crystallisation from methanol solution (0.20 g, 37%). Analysis: Found(Calc. for C₁₀H₈N₈·H₂O): C 46.7(46.5); H 3.20(3.87); N 43.3(43.4)%. ¹H NMR [δ (ppm), MeOH-d₄]: 5.08 [s, 4H, 2 CH₂], 7.91 [m, 4H, H¹, H²-C₆H₄]. ¹³C NMR [δ (ppm), MeOH-d₄]: 45.9 [2 CH₂], 123.5 [2 i-C₆H₄], 131.9 [2 C¹-C₆H₄], 132.1 [2 C²-C₆H₄], 153.2 [2 CN₄].

1,2-Bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N':2a)and 1,2-bis[(2-bromoethyl)tetrazol-5-yl]benzene (1-N,2-N':2b). Compound 22 (2.0 g, 2.5 mmol) was heated to 110 °C as a neat suspension in 1,2-dibromoethane (7 ml) for three hours. This resulted in a viscous amber solution which, on cooling, was chromatographed on silica gel employing a gradient of petroleum ether (bp 40-60 °C) to CH₂Cl₂. Compounds 2a and 2b were isolated as crystalline solids after recrystallisation from CH₂Cl₂. 2a: Analysis: Found(Calc. for C₁₂H₁₂Br₂N₈): C 34.1(33.7); H 2.84(2.81); N 25.9(26.1)%. ¹H NMR [δ (ppm), CDCl₃]: 3.73 [t, 4H, 2 CH₂Br], 4.89 [t, 4H, CH₂N², CH₂N²'], 7.54 [dd, 2H, H¹-C₆H₄], 7.85 [dd, 2H, H²-C₆H₄].¹³C NMR [δ (ppm), CDCl₃]: 27.0 [2 CH₂Br], 53.9 [CH₂N², CH₂N²'], 127.3 $[2 i-C_6H_4], 130.3 [2 C^1-C_6H_4], 130.6 [2 C^2-C_6H_4], 164.7 [2 CN_4].$ **2b**: Analysis: Found(Calc. for $C_{12}H_{12}Br_2N_8$): C 33.5(33.7); H 3.20(2.81); N 25.6(26.1)%. ¹H NMR [δ (ppm), CDCl₃]: 3.65 [m, 4H, 2 CH_2Br], 4.36 [t, 2H, CH_2N^1], 4.84 [t, 2H, $CH_2N^{2\prime}$], 7.50–7.75 [m, 3H, H¹H²H³-C₆H₄], 8.28 [d, 1H, H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 27.3 [CH₂Br], 27.8 [CH₂Br], 48.5 [CH₂N¹], 54.0 [CH₂N²'], 122 2 [i¹-C₆H₄], 126.9 [i²-C₆H₄], 29.3 [C¹-C₆H₄], 130.6 [C²-C₆H₄], 131.8 [C³-C₆H₄], 131.9 [C⁴-C₆H₄], 154.3 [CN₄ (N¹CH₂)], 163.0 [CN₄ (N²'CH₂)].

1,2-Bis[(3-bromopropyl)tetrazol-5-yl]benzene (2-*N*,2-*N*':3a). This compound was prepared by the same general method from **22** and 1,3-dibromopropane as a waxy solid. Analysis: Found(Calc. for $C_{14}H_{16}Br_2N_8$): C 36.7(36.8); H 3.46(3.51); N 24.1(24.5)%. ¹H NMR [δ (ppm), CDCl₃]: 2.51 [m, 4H, C*H*₂], 3.40 [t, 4H, 2 C*H*₂Br], 4.77 [t, 4H, C*H*₂N², C*H*₂N^{2'}], 7.60 [dd, 2H, H¹-C₆*H*₄], 7.89 [dd, 2H, H²-C₆*H*₄]. ¹³C NMR [δ (ppm), CDCl₃]: 29.3 [*CH*₂], 32.2 [2 *CH*₂Br], 51.3 [*CH*₂N², *CH*₂N^{2'}], 127.3 [2 i-C₆H₄], 130.6 [2 C¹-C₆H₄], 130.8 [2 C²-C₆H₄], 164.7 [2 *CN*₄].

1,2-Bis[(5-bromopentyl)tetrazol-5-yl]benzene (2-*N*,2-*N*':4a) and 1,2-bis[(5-bromopentyl)tetrazol-5-yl]benzene (1-N,2-N': 4b). These compounds were prepared by the same general method from 22 and 1,5-dibromopentane as waxy solids. 4a: Analysis: Found(Calc. for C₁₈H₂₄Br₂N₈): C 42.9(42.2); H 5.12(4.69); N 21.6(21.8)%. ¹H NMR [δ (ppm), CDCl₃]: 1.39 [m, 4H, 2 CH₂], 1.76–1.82 [m, 4H, 2 CH₂], 1.88–1.94 [m, 4H, 2 CH₂], 3.31 [t, 4H, 2 CH₂Br], 4.50 [t, 4H, CH₂N², CH₂N²'], 7.52 [dd, 2H, H¹-C₆ H_4], 7.80 [dd, 2H, H²-C₆ H_4]. ¹³C NMR [δ (ppm), C^1 - C_6H_4], 130.3 [2 C^2 - C_6H_4], 164.1 [2 CN_4]. **4b**: Analysis: Found(Calc. for C₁₈H₂₄Br₂N₈): C 42.6(42.2); H 4.86(4.69); N 21.5(21.8)%. ¹H NMR [δ (ppm), CDCl₃]: 1.23–1.35 [m, 4H, 2 CH₂], 1.62–1.86 [m, 8H, 4 CH₂], 3.23 [t, 2H, CH₂Br], 3.33 [t, 2H, CH₂Br], 3.99 [t, 2H, CH₂N¹], 4.42 [2, 2H-CH₂N²'], 7.42 [d, 1H, H¹-C₆H₄], 7.57–7.71 [m, 2H, H², H³-C₆H₄], 8.25 [d, 1H, H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 24.5 [CH₂], 24.6 [CH₂], 27.8 [CH₂], 27.9 [CH₂], 31.4 [CH₂], 31.5 [CH₂], 32.9 [CH₂Br], 33.0 [CH₂Br], 47.0 [CH₂N¹], 52.7 [CH₂N²'], 122.7 [i¹-C₆H₄], 127.3 $[i^2 - C_6 H_4]$, 129.2 $[C^1 - C_6 H_4]$, 130.2 $[C^2 - C_6 H_4]$, 130.9 $[C^3 - C_6 H_4]$ C₆H₄], 131.4 [C⁴-C₆H₄], 153.8 [CN₄ (N¹CH₂)], 162.7 [CN₄ $(N^{2}CH_{2})].$

1,2-Bis[(6-bromohexyl)tetrazol-5-yl]benzene (2-N,2-N':5a) and 1,2-bis[(6-bromohexyl)tetrazol-5-yl]benzene (1-N,2-N':5b). These compounds were prepared by the same general method from 22 and 1,6-dibromohexane as viscous oils. 5a: Analysis: Found(Calc. for $C_{20}H_{28}Br_2N_8$): C 45.3(44.5); H 5.30(5.19); N 20.6(20.7)%. ¹H NMR [δ (ppm), CDCl₃]: 1.15–1.26 [m, 4H, 2 CH₂], 1.31–1.36 [m, 4H, 2 CH₂], 1.73 [m, 4H, 2 CH₂], 1.88 [m, 4H, 2 CH₂], 3.29 [t, 4H, 2 CH₂Br], 4.48 [t, 4H, CH₂N², $CH_2N^{2'}$], 7.51 [dd, 2H, H¹-C₆H₄], 7.79 [dd, 2H, H²-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 24.96 [2 CH₂], 27.0 [2 CH₂], 28.7 [2 CH₂], 32.0 [2 CH₂], 33.3 [2 CH₂Br], 52.5 [CH₂N², CH₂- $N^{2'}$], 127.0 [2 i- C_6H_4], 129.8 [2 C¹- C_6H_4], 130.1 [2 C²- C_6H_4], 163.8 [2 CN₄]. **5b**: Analysis: Found(Calc. for C₂₀H₂₈Br₂N₈): C 44.7(44.5); H 5.40(5.19); N 19.3(20.7)%. ¹H NMR [δ (ppm), CDCl₃]: 1.18–1.45 [m, 8H, 4 CH₂], 1.64–1.86 [m, 8H, 4 CH₂], 3.26 [t, 2H, CH₂Br], 3.34 [t, 2H, CH₂Br], 3.97 [t, 2H, CH₂N¹], 4.41 [t, 2H, $CH_2N^{2\prime}$], 7.41 [d, 1H, H^1 - C_6H_4], 7.59 [t, 1H, H^2 - C_6H_4], 7.69 [t, 1H, H^3 - C_6H_4], 8.28 [d, 1H, H^4 - C_6H_4]. ¹³C NMR [δ (ppm), CDCl₃]: 25.4 [CH₂], 25.4 [CH₂], 27.3 [CH₂], 27.3 [CH₂], 28.8 [CH₂], 29.1 [CH₂], 32.2 [CH₂], 32.3 [CH₂], 33.3 [CH₂Br], 33.5 [CH₂Br], 47.3 [CH₂N¹], 53.0 [CH₂N²'], 127.7 $[i^1-C_6H_4]$, 129.51 $[i^2-C_6H_4]$, 130.7 $[C^1-C_6H_4]$, 130.5 $[C^2-C_6H_4]$, 131.1 $[C^3-C_6H_4]$, 131.2 $[C^4-C_6H_4]$, 154.0 $[CN_4 (N^1CH_2)]$, 162.9 $[CN_4 (N^2'CH_2)].$

1,3-Bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N':6a)and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (1-N,2-N':6b). These compounds were prepared by the same general method from 23 and 1,2-dibromoethane and were isolated, after recrystallisation from CH₂Cl₂, as colourless crystalline solids. 6a: Analysis: Found(Calc. for C₁₂H₁₂Br₂N₈): C 34.1(33.7); H 2.91(2.81); N 25.4(26.1)%. ¹H NMR [δ (ppm), CDCl₃]: 3.86 [t, 4H, 2 CH₂Br], 5.01 [t, 4H, CH₂N², CH₂N²'], 7.57 [t, 1H, H¹- C_6H_4], 8.20 [dd, 2H, 2 H²- C_6H_4], 8.86 [s, 1H, H³- C_6H_4]. ¹³C NMR [δ (ppm), CDCl₃]: 27.1 [2 CH₂Br], 54.0 [CH₂N², CH₂N²'], 125.3 [C¹-C₆H₄], 127.9 [2 C²-C₆H₄], 128.7 [C³-C₆H₄], 129.6 [2 i-C₆H₄], 164.8 [2 CN₄]. 6b: Analysis: Found(Calc. for C₁₂H₁₂Br₂N₈): C 33.0(33.7); H 2.89(2.81); N 25.5(26.2)%. ¹H NMR [δ (ppm), CDCl₃]: 3.81 [t, 2H, CH₂Br], 3.86 [t, 2H, CH_2Br], 4.80 [t, 2H, CH_2N^1], 5.02 [t, 2H, $CH_2N^{2'}$], 7.66 [m, 1H, H¹-C₆H₄], 7.76 [m, 1H, H²-C₆H₄], 8.33 [m, 1H, H³-C₆H₄], 8.42 [m, 1H, H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 27.1 [CH₂Br], 28.0 [CH₂Br], 49.0 [CH₂N¹], 54.2 [CH₂N²'], 124.5 [i¹-C₆H₄], 127.2 $[C^1-C_6H_4]$, 128.5 $[i^2-C_6H_4]$, 129.6 $[C^2-C_6H_4]$, 130.2 $[C^3-C_6H_4]$ C_6H_4], 130.9 [C⁴- C_6H_4], 154.5 [CN₄ (N¹CH₂)], 164.1 [CN₄ $(N^{2'}CH_{2})].$

1,3-Bis[(3-bromopropyl)tetrazol-5-yl]benzene (2-N,2-N':7a) 1,3-bis[(3-bromopropyl)tetrazol-5-yl]benzene and (1-N.2-N':7b). These compounds were prepared by the same general method from 23 and 1,3-dibromopropane and were isolated as waxy solids. 7a: Analysis: Found(Calc. for C₁₄H₁₆Br₂N₈): C 36.5(36.8); H 3.40(3.51); N 23.7(24.5)%. ¹H NMR [δ (ppm), CDCl₃]: 2.56 [m, 4H, 2 CH₂], 3.41 [t, 4H, 2 CH₂Br], 4.80 [t, 4H, CH_2N^2 , $CH_2N^{2'}$], 7.54 [t, 2H, H¹-C₆H₄], 8.17 [dd, 2H, 2 H²- C_6H_4], 8.81 [dd, 1H, H³- C_6H_4]. ¹³C NMR [δ (ppm), CDCl₃]: 28.9 [2 CH₂], 31.9 [2 CH₂Br], 51.3 [CH₂N², CH₂N²'], 125.1 [C¹- C_6H_4], 128.1 [2 C²- C_6H_4], 128.5 [2 i- C_6H_4], 129.5 [C³- C_6H_4], 164.6 [2 CN_4]. 7b: Analysis: Found(Calc. for $C_{14}H_{16}Br_2N_8$): C 36.8(36.8); H 3.63(3.51); N 23.8(24.5)%. ¹H NMR [δ (ppm), CDCl₃]: 2.51 [m, 4H, 2 CH₂], 3.36 [t, 2H, CH₂Br], 3.41 [t, 2H, CH₂Br], 4.60 [t, 2H, CH₂N¹], 4.80 [t, 2H, CH₂N^{2'}], 7.63 [t, 1H, H¹-C₆H₄], 7.74 [d, 1H, H²-C₆H₄], 8.27 [d, 1H, H³-C₆H₄], 8.37 [s, 1H, H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 28.8 [CH₂], 28.9 [CH₂], 31.7 [CH₂Br], 31.8 [CH₂Br], 46.3 [CH₂N¹], 51.3 $[CH_2N^{2'}]$, 124.4 [i¹-C₆H₄], 126.8 [C¹-C₆H₄], 128.5 [i²-C₆H₄], 129.3 [C²-C₆H₄], 130.0 [C³-C₆H₄], 130.4 [C⁴-C₆H₄], 153.9 [CN₄ $(N^{1}CH_{2})], 163.8 [CN_{4} (N^{2}CH_{2})].$

1,3-Bis[(4-bromobutyl)tetrazol-5-yl]benzene (2-N,2-N':8a)and 1,3-bis[(4-bromobutyl)tetrazol-5-yl]benzene (1-N,2-N':8b). These compounds were prepared by the same general method from 23 and 1,4-dibromobutane as a crystalline solid and a viscous oil respectively. 8a: Analysis: Found(Calc. for C₁₆H₂₀- Br_2N_8): C 39.2(39.7); H 4.18(4.13); N 22.6(23.1)%. ¹H NMR [δ (ppm), CDCl₃]: 1.89–1.99 [m, 4H, 2 CH₂], 3.46 [t, 4H, 2 CH_2Br], 4.72 [t, 4H, CH_2N^2 , $CH_2N^{2'}$], 7.62 [t, 1H, H¹-C₆H₄], 8.24 [dd, 2H, 2 H²-C₆ H_4], 8.90 [t, 1H, H³-C₆ H_4]. ¹³C NMR [δ (ppm), CDCl₃]: 27.8 [2 CH₂], 29.2 [2 CH₂], 32.1 [2 CH₂Br], 52.2 [CH_2N^2 , $CH_2N^{2\prime}$], 125.2 [C^1 - C_6H_4], 128.2 [2 i- C_6H_4], 128.5 $[2 C^2-C_6H_4]$, 129.5 $[C^3-C_6H_4]$, 164.6 $[2 CN_4]$. 8b: Analysis: Found(Calc. for C₁₆H₂₀Br₂N₈): C 40.4(39.7); H 4.26(4.13); N 22.7(23.1)%. ¹H NMR [δ (ppm), CDCl₃]: 1.87–1.98 [m, 4H, 2 CH₂], 2.11–2.18 [m, 2H, CH₂], 2.19–2.32 [m, 2H, CH₂], 3.41 [t, 2H, CH₂Br], 3.47 [t, 2H, CH₂Br], 4.55 [t, 2H, CH₂N¹], 4.74 [t, 2H, $CH_2N^{2'}$], 7.73 [t, 1H, H¹-C₆H₄], 7.88 [d, 1H, H²-C₆H₄], 8.37 [d, 1H, H³-C₆H₄], 8.45 [s, 1H, H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 27.8 [CH₂], 28.2 [CH₂], 29.1 [CH₂], 29.2 [CH₂], 32.0 [CH₂Br], 32.1 [CH₂Br], 47.3 [CH₂N¹], 52.4 [CH₂N²'], 124.8 $[i^1-C_6H_4]$, 126.7 $[C^1-C_6H_4]$, 128.7 $[i^2-C_6H_4]$, 129.4 $[C^2-C_6H_4]$, 130.1 [C³-C₆H₄], 130.5 [C⁴-C₆H₄], 153.8 [CN₄ (N¹CH₂)], 163.9 $[CN_4 (N^{2'}CH_2)].$

1,3-Bis[(5-bromopentyl)tetrazol-5-yl]benzene (2-N,2-N':9a) and 1,3-bis[(5-bromopentyl)tetrazol-5-yl]benzene (1-N,2-N':9b). These compounds were prepared by the same general method from 23 and 1,5-dibromopentane as viscous oils. 9a: Analysis: Found(Calc. for C₁₈H₂₄Br₂N₈): C 43.3(42.2); H 4.76(4.69); N 20.9(21.8)%. ¹H NMR [δ (ppm), CDCl₃]: 1.51 [m, 4H, 2 CH₂], 1.90 [m, 4H, 2 CH₂], 2.08 [m, 4H, 2 CH₂], 3.38 [t, 4H, 2 CH₂Br], 4.66 [t, 4H, CH₂N², CH₂N²'], 7.59 [t, 1H, $H^{1}-C_{6}H_{4}$], 8.21 [dd, 2H, 2 $H^{2}-C_{6}H_{4}$], 8.88 [t, 1H, $H^{3}-C_{6}H_{4}$]. ¹³C NMR [δ (ppm), CDCl₃]: 24.9 [2 CH₂], 28.4 [2 CH₂], 31.8 [2 CH₂], 33.0 [2 CH₂Br], 52.9 [CH₂N², CH₂N²'], 125.1 [C¹- C_6H_4], 128.2 [2 i- C_6H_4], 128.4 [2 C²- C_6H_4], 129.5 [C³- C_6H_4], 164.5 [2 CN₄]. 9b: Analysis: Found(Calc. for C₁₈H₂₄Br₂N₈): C 42.0(42.2); H 4.80(4.69); N 20.8(21.8)%. ¹H NMR [δ (ppm), CDCl₃]: 1.37-1.53 [m, 4H, 2 CH₂], 1.74-2.07 [m, 8H, 4 CH₂], 3.27–3.56 [m, 4H, 2 CH₂Br], 4.43 [t, 2H, CH₂N¹], 4.63 [t, 2H, CH₂N²'], 7.62–7.76 [m, 2H, H¹H²-C₆H₄], 8.29–8.36 [m, 2H, H³H⁴-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 24.9 [2 CH₂], 28.4 [CH₂], 28.8 [CH₂]: 31.7 [CH₂], 31.8 [CH₂], 32.9 [CH₂Br], 33.0 [CH₂Br], 47.9 [CH₂N¹], 53.0 [CH₂N²'], 124.8 [i¹-C₆H₄], 126.7 $[C^1 - C_6 H_4]$, 128.8 $[i^2 - C_6 H_4]$, 129.4 $[C^2 - C_6 H_4]$, 130.1 $[C^3 - C_6 H_4]$, 130.4 [C⁴-C₆H₄], 153.7 [CN₄ (N¹CH₂)], 163.8 [CN₄ (N²'CH₂)].

1,3-Bis[2-(6-bromohexyl)tetrazol-5-yl]benzene (2-*N*,2-*N*': **10a).** This compound was prepared by the same general method from **23** and 1,6-dibromohexane as a waxy solid. Analysis: Found(Calc. for $C_{20}H_{28}Br_2N_8$): C 44.6(44.5); H 5.29(5.19); N 20.5(20.7)%. ¹H NMR [δ (ppm), CDCl₃]: 1.21–1.32 [m, 4H, 2 CH₂], 1.35–1.45 [m, 4H, 2 CH₂], 1.63–1.82 [m, 4H, 2 CH₂], 1.85–1.96 [m, 4H, 2 CH₂], 3.31 [t, 4H, 2 CH₂Br], 4.50 [t, 4H, CH₂N², CH₂N²'], 7.53 [t, 1H, H¹-C₆H₄], 7.81 [dd, 2H, 2 H²-C₆H₄], 8.41 [t, 1H, H³-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 25.2 [2 CH₂], 27.2 [2 CH₂], 28.9 [2 CH₂], 32.2 [2 CH₂], 33.4 [2 CH₂Br], 52.7 [CH₂N², CH₂N²'], 127.2 [2 i-C₆H₄], 129.3 [C¹-C₆H₄], 129.9 [2 C²-C₆H₄], 130.3 [C³-C₆H₄], 164.1 [2 CN₄].

1,3-Bis[2-(8-bromooctyl)tetrazol-5-yl]benzene (2-*N*,2-*N*': **11a).** This compound was prepared by the same general method from **23** and 1,8-dibromooctane as a colourless oil whch solidified to a waxy solid on standing. Analysis: Found (Calc. for $C_{24}H_{36}Br_2N_8$): C 48.8(48.4); H 6.23(6.04); N 18.9(18.8)%. ¹H NMR [δ (ppm), CDCl₃]: 1.25–1.47 [m, 16H, 8 CH₂], 1.81– 1.88 [m, 4H, 2 CH₂], 2.06–2.10 [m, 4H, 2 CH₂], 3.40 [t, 4H, 2 CH₂Br], 4.68 [t, 4H, CH₂N², CH₂N^{2'}], 7.63 [t, 1H, H¹-C₆H₄], 8.26 [dd, 2H, 2 H²-C₆H₄], 8.90 [t, 1H, H³-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 26.2 [2 CH₂], 27.9 [2 CH₂], 28.4 [2 CH₂], 28.7 [2 CH₂], 29.3 (2 CH₂); 32.6 (2 CH₂); 33.8 [2 CH₂Br], 53.2 [CH₂N², CH₂N^{2'}], 125.2 [C¹-C₆H₄], 128.3 [2 i-C₆H₄], 128.4 [2 C²-C₆H₄], 129.5 [C³-C₆H₄], 164.5 [2 CN₄].

1,3-Bis{[2-(bromomethyl)benzyl]tetrazol-5-yl}benzene (2-N,2-N':12a) and 1,3-bis{[2-(bromomethyl)benzyl]tetrazol-5yl}benzene (1-N,2-N':12b). These compounds were prepared by heating 23 (1 g, 1.26 mmol) and α, α' -dibromo-*m*-xylene (3.3 g, 12.6 mmol) as a melt at 120 °C for two hours. The opaque mass which formed on cooling was then chromatographed as previously described to yield 12a and 12b as a crystalline solid and a viscous oil respectively. 12a: Analysis: Found(Calc. for $C_{24}H_{20}Br_2N_8$): C 49.2(49.6); H 3.53(3.45); N 18.3(19.3)%. ¹H NMR [δ (ppm), CDCl₃]: 4.39 [s, 4H, 2 CH₂Br], 5.74 [s, 4H, CH_2N^2 , $CH_2N^{2'}$], 7.29 [m, 6H, 2 *o*,*m*-C₆ H_4 (CH₂)₂], 7.38 [s, 2H, 2 $o-C_6H_4(CH_2)_2$], 7.52 [t, 1H, H¹-C₆H₄], 8.16 [dd, 2H, 2 H²- C_6H_4], 8.82 [s, 1H, H³- C_6H_4]. ¹³C NMR [δ (ppm), CDCl₃]: 32.6 [2 CH₂Br], 56.5 [CH₂N², CH₂N²'], 125.4, 128.4, 128.6 and 129.0 [3 *o*, 1 *m*-C₆H₄(CH₂)₂], 128.1 [2 i-C₆H₄], 129.5 [C¹-C₆H₄], 129.6 $[2 C^2-C_6H_4]$, 129.7 $[C^3-C_6H_4]$, 133.8 and 138.8 $[2 i-C_6H_4(CH_2)_2]$, 165.0 [2 CN₄]. 12b: Analysis: Found(Calc. for C₂₄H₂₀Br₂N₈): C 50.4(49.6); H 3.66(3.45); 19.3(19.3)%. ¹H NMR [δ (ppm), CDCl₃]: 4.32 [s, 2H, CH₂Br], 4.38 [s, 2H, CH₂Br], 5.56 [s, 2H, CH₂N¹], 5.73 [s, 2H, CH₂N²'], 7.16–8.78 [m, 8H, o,m-C₆H₄, o,m-C₆H₄(CH₂)₂]. ¹³C NMR [δ (ppm), CDCl₃]: 32.5 [2 CH₂Br], 51.3 [CH₂N¹], 56.6 [CH₂N²'], 124.4 [i¹-C₆H₄], 127.9 [i²-C₆H₄], 126.9, 127.5, 128.2, 128.3, 128.6, 128.9, 129.5, 129.5, 129.6, 129.7, 129.9 and 130.6 [2 *o*,*m*-C₆H₄, 2 *o*,*m*-C₆H₄(CH₂-)₂], 133.6, 134.0, 138.8 and 138.9 [4 i-C₆H₄(CH₂-)₂], 153.9 [CN₄ (N¹CH₂)], 164.8 [CN₄ (N²'CH₂)].

1,3-Bis[2-(3-cyanopropyl)tetrazol-5-yl]benzene (2-N,2-N':13). Compound 23 (6.0 g, 7.6 mmol) and 4-bromobutyronitrile (ca. 20 g, 133 mmol) were heated at 120 °C for two hours giving an amber oil. Elution with a gradient of petrol (bp 40–60 °C) to acetone on silica gel yielded a single fraction, 13, as a viscous oil which solidified on standing to an amorphous solid. Purification was by column chromatography (petroleum ether (bp 40-60 °C) to 40% acetone on silica gel) followed by recrystallisation from acetone-petroleum ether. Mp 82-84 °C. Analysis: Found(Calc. for C₁₆H₁₆N₁₀): C 55.2(55.2); H 4.82(4.60); N 39.6(40.2)%. ¹H NMR [δ (ppm), CDCl₃]: 2.32–2.56 [m, 8H, 2 CH_2CH_2CN], 4.84 [t, 4H, CH_2N^2 , $CH_2N^{2'}$], 7.64 [t, 1H, $H^{1}-C_{6}H_{4}$], 8.22 [dd, 2H, 2 $H^{2}-C_{6}H_{4}$], 8.85 [s, 1H, $H^{3}-C_{6}H_{4}$]. ¹³C NMR [δ (ppm), CDCl₃]: 14.8 [2 CH₂CH₂CN], 25.2 [2 CH₂CN], 51.2 [CH₂N², CH₂N²'], 117.9 [2 CH₂CN], 127.9 [2 i-C₆H₄], 128.7 $[C^1-C_6H_4]$, 129.6 $[2 C^2-C_6H_4]$, 130.3 $[C^3-C_6H_4]$, 164.8 $[2 CN_4]$. Mass spectrum (*m*/*z*, CI): 349 [M + 1], 292 [M - 2N₂]. IR [(cm⁻¹), Nujol mull]: 2249 [v(CN)].

1,3-Bis[(2-3-[(2-tributylstannyl)tetrazol-5-yl]propyl}tetrazol-5-yl)benzene (2-N,2-N':14). Compound 13 (0.5 g, 1.44 mmol) was heated as a neat suspension under nitrogen with tributyltin azide (0.93 g, 2.81 mmol) at 180 °C for 1 hour. This yielded a viscous amber oil which solidified to a brittle glass on cooling. Dissolution in methanol and filtration through activated carbon afforded a colourless solution which was evaporated and dried under vacuum to give 14 as a bis-methanol solvated glass. Analysis: Found(Calc. for C₄₂H₆₆N₁₆O₂Sn₂): C 46.9(47.3); H 7.43(7.25); 20.8(21.0)%. ¹H NMR [δ (ppm), DMSO-d₆]: 0.78 [t, 18H, 6 CH₃], 1.15–1.31 [m, 24H, 6 CH₂CH₂CH₂CH₃], 1.44-1.52 [m, 12H, 6 CH₂CH₂CH₂CH₃], 2.37-2.48 [m, 4H, 2 CH₂CH₂CH₂CN₄], 2.84 [t, 4H, CH₂CN₄], 4.88 [t, 4H, CH₂N², CH₂N²'], 7.76 [t, 1H, H¹-C₆H₄], 8.20 [dd, 2H, 2 H²-C₆H₄], 8.74 [s, 1H, H³-C₆ H_4]. ¹³C NMR [δ (ppm), DMSO-d₆]: 13.3 [6 CH₃], 18.1 [SnCH₂(CH₂)₂CH₃], 21.6 [2 CH₂CN₄], 26.2 [Sn(CH₂)₂-CH₂CH₃], 27.5 [SnCH₂CH₂CH₂CH₂CH₃], 27.7 [2 CH₂CH₂CN₄], 52.3 [2 CH₂N²], 127.9 [C¹-C₆H₄], 128.0 [2 i-C₆H₄], 128.6 [2 C²-C₆H₄], 130.2 [C³-C₆H₄], 161.0 [2 CN₄SnBu₃], 163.4 [2 CN₄], ${}^{1}J[{}^{13}C-{}^{117,119}Sn] 478.0 \text{ Hz} \text{ (unresolved); } {}^{3}J[{}^{13}C-{}^{117,119}Sn] 75.4 \text{ Hz}$ (unresolved). ¹¹⁹Sn NMR [δ (ppm), DMSO-d₆]: -55.1. ^{119m}Sn Mössbauer (mm s⁻¹): is (isomer shift) = 1.40; qs = 3.50.

Anhydrous material can be obtained if the initial glass is extracted with boiling hexane to extract any unreacted reagents. Analysis: Found(Calc. for $C_{40}H_{70}N_{16}Sn_2$): C 47.4(47.4); H 6.57(6.90); N 22.5(22.1)%. ¹¹⁹Sn NMR [δ (ppm), CH₃OH-d⁴]: -16.2. ¹¹⁹Sn Mössbauer (mm s⁻¹): is = 1.47; qs = 3.70.

1,3-Bis(2-{3-[2-(3-cyanopropyl)tetrazol-5-yl]propyl}tetrazol-5-yl)benzene (2-N,2-N':15). A mixture of 14 (0.98 g, 0.97 mmol) and 4-bromobutyronitrile (1.72 g, 11.6 mmol) was heated at 120 °C for 3 h. Further 4-bromobutyronitrile (0.57 g, 3.88 mmol) was added and heating was continued for a further 7 h to yield an amber oil. Purification by column chromatography eluting with a gradient from petroleum ether (bp 40-60 °C) to 40% acetone on silica gel produced 15 as an orange oil (46 mg, 8%). ¹H NMR [δ (ppm), CDCl₃]: 2.30–2.70 [m, 12H, 2 CH₂CN, 4 CH₂CH₂CH₂], 3.00 [t, 4H, CH₂N²], 4.72 [m, 3H, $CH_2N^{2'}$], 4.83 [m, 5H, $CH_2N^{2'}$], 7.63 [t, 1H, H¹-C₆H₄], 8.23 [d, 2H, 2 H²-C₆H₄], 8.90 [s, 1H, H³-C₆H₄]. ¹³C NMR [δ (ppm), CDCl₃]: 14.8 [2 CH₂CH₂CN], 22.5 [2 CH₂CH₂CN₄], 25.1 [2 CH₂CN], 27.1 [2 CH₂CN₄], 51.2, 52.3 [2 CH₂N², 2 CH₂N²'], 118.0 [2-CH₂CN], 125.2 [2 i- C_6H_4], 128.6 [C¹- C_6H_4], 128.7 [2 C²-C₆H₄], 129.7 [C³-C₆H₄], 164.6 [2 CN₄], 165.4 [2 CH₂CN₄]. IR $[(cm^{-1}), Nujol mull]: 2249 [v(CN)].$

2-(Tributystannyl)-5-(azidomethyl)tetrazole (16). Tributyltin azide (2.66 g, 8 mmol) and azidoacetonitrile¹⁵ (1.00 g, 12 mmol) were heated together under vacuum for 1 h at 100 °C. The resulting dark oil showed an azide band $v(N_3)$ at 2102 cm⁻¹ differing from that in either reagent. Analysis: Found(Calc. for

 $\begin{array}{l} C_7H_{29}N_7Sn): C \ 41.2(40.6); \ H \ 7.21(7.06); \ N \ 21.8(23.7). \ ^1H \ NMR \\ [\delta \ (ppm), \ CDCl_3]: \ 0.81 \ (m, \ 9H, \ CH_3), \ 1.29 \ (m, \ 6H, \ SnCH_2), \ 1.55 \\ (m, \ 12H, \ SnCH_2CH_2CH_2), \ 4.59 \ (s, \ 2H, \ N_3CH_2). \ ^{13}C \ NMR \\ [\delta \ (ppm), \ CDCl_3]: \ 13.5 \ (CH_3), \ 18.4 \ (SnCH_2), \ 26.9 \ (CH_2CH_3), \\ 28.1 \ (SnCH_2CH_2), \ 37.2 \ (N_3CH_2), \ 157.5 \ (CN_4). \ ^{119}Sn \ [\delta \ (ppm), \ CDCl_3]: \ -27.9. \ ^{119m}Sn \ M\"omegasharpi sharpi sharpi$

Hydrated 1,2-ditetrazol-5-ylbenzene (17). Compound **22** (3.0 g, 3.8 mmol) in methanol (100 ml) was treated with 12 M HCl (1 ml, 12 mmol) and was refluxed for 1 h during which time the suspension dissolved. After solvent removal *in vacuo* the residue was washed with hexane to remove Bu₃SnCl and recrystallised from methanol to give **17** in quantitative yield. Microanalysis was consistent with the incorporation of 1.5 H₂O. Analysis: Found(Calc. for C₈H₉N₈O_{1.5}): C 40.2(39.5); H 2.76(3.70); N 46.5(46.1)%. ¹H NMR [δ (ppm), DMSO-d₆]: 5.74 [br s, 2H, H_2 O], 7.81 [m, 2H, o-C₆H₄], 7.90 [m, 2H, m-C₆H₄], 9.97 [br s, 2H, NH]. ¹³C NMR [δ (ppm), DMSO-d₆]: 124.7 [2 i-C₆H₄], 130.5 [2 o-C₆H₄], 131.5 [2 m-C₆H₄], 155.0 [2 CN₄].

Compounds 18, 19 and 20 were also prepared by the same methodology.

Hydrated 1,3-ditetrazol-5-ylbenzene (18). From **23**, white needles of the monohydrate were produced in quantitative yield. Analysis: Found(Calc. for C₈H₈N₈O): C 41.7(41.3); H 2.77(2.61); N 47.9(48.2)%. ¹H NMR [δ (ppm), DMSO-d₆]: 7.79 [t, 1H, *m*-C₆H₄], 8.17 [dd, 2H, *o*-C₆H₄], 8.74 [t, 1H, *o*-C₆H₄]. ¹³C NMR [δ (ppm), DMSO-d₆]: 125.4 [*m*-C₆H₄], 125.7 [2 i-C₆H₄], 129.4 [2 *o*-C₆H₄], 130.7 [2 *o*-C₆H₄], 155.6 [2 CN₄].

1,4-Ditetrazol-5-ylbenzene (19). From **24**, a white solid produced in quantitative yield. Analysis: Found(Calc. for $C_8H_6N_8$): C 44.5(44.8); H 2.68(2.81); N 51.8(52.3)%. ¹H NMR [δ (ppm), DMSO-d₆]: 8.21 [s, 4H, o- C_6H_4]. ¹³C NMR [δ (ppm), DMSO-d₆]: 127.8 [2 i- C_6H_4], 128.0 [4 o- C_6H_4], 155.4 [2 CN_4].

Ditetrazol-5-ylmethane (20). From **25**, a white solid produced in quantitative yield. Analysis: Found(Calc. for $C_3H_4N_8$): C 23.5(23.7); H 2.58(2.65); N 74.0(73.7)%. ¹H NMR [δ (ppm), DMSO-d₆]: 3.20 [s, 2H, CH₂], 14.74 [s 2H, NH]. ¹³C NMR [δ (ppm), DMSO-d₆]: 18.3 [CH₂], 151.6 [2 CN₄].

1,3-Bis{[3-(tetrazol-5-yl)propyl]tetrazol-5-yl}benzene-

1.5MeOH (2-*N***,2**-*N***':21).** From **14**, a white solid produced in 84%. Analysis: Found(Calc. for $C_{17.5}H_{24}N_{16}O_{1.5}$): C 43.2(43.5); H 4.42(4.90); N 46.8(46.5)%. ¹H NMR [δ (ppm), CH₃OH-d₄, 55 °C]: 2.45 [m, 1H], 2.62 [m, 4H], 3.12 [t, 3H] (all 2 C*H*₂C*H*₂), 4.89 [t, 4H, 2 CH₂N], 7.66 [t, 1H, H¹-C₆*H*₄], 8.21 [d, 2H, H²-C₆*H*₄], 8.80 [s, 1H, H³-C₆*H*₄]. ¹³C NMR [δ (ppm), CH₃OH-d₄, 55 °C]: 22.4 [2 CH₂CH₂CN₄], 28.6 [2 CH₂CN₄], 54.2 [2 CH₂N], 126.8 [2 *i*-C₆H₄], 130.4 [2 C^{1,2}-C₆H₄], 131.7 [C³-C₆H₄], 158.0 [2 CN₄], 166.6 [2 CH₂CN₄].

X-Ray crystallography

General. Software used was SHELX86,¹⁹ SHELX93²⁰ and ORTEX.²¹ CCDC reference number 207/368. See http://www.rsc.org/suppdata/p1/1999/3507 for crystallographic files in .cif format.

Compound 1. Crystal data: $C_{10}H_8N_8$, M = 480.49, tetragonal, a = 24.513(2), b = 24.513(2), c = 7.035(1) Å, U = 4227.2(8) Å³, space group $I4_1cd$, Z = 8, μ (Mo-K α) = 0.105 mm⁻¹. Crystallographic measurements were made at 293(2) K on a CAD4 automatic four-circle diffractometer in the range 2.35 < θ < 23.97°. The solution of the structure (SHELX86) and refinement (SHELX93) converged to a conventional [*i.e.* based on 692F data with $F_0 > 4\sigma(F_0)$] $R_1 = 0.0427$ and $wR_2 = 0.0907$. Goodness of fit = 1.092. **Compound 6a.** Crystal data: $C_{12}H_{12}Br_2N_8$, M = 428.12, monoclinic, a = 15.959(3), b = 11.370(2), c = 8.974(1) Å, $\beta = 102.82(1)^\circ$, U = 1587.8(4) Å³, space group C2/c, Z = 4, μ (Mo-K α) = 5.115 mm⁻¹. Crystallographic measurements were made at 293(2) K on a CAD4 automatic four-circle diffractometer in the range 2.22 < θ < 23.98°. The asymmetric unit in this structure consists of one half of the molecule above, the remainder of which is generated *via* the 1 - *x*, *y*, $\frac{3}{2} - z$ symmetry operation. The solution of the structure (SHELX86) and refinement (SHELX93) converged to a conventional [*i.e.* based on 814*F* data with $F_o > 4\sigma(F_o)$] $R_1 = 0.0674$ and $wR_2 = 0.1566$. Goodness of fit = 1.234.

Compound 17. *Crystal data:* $C_8H_{14}N_8O_4$, M = 286.27, monoclinic, a = 7.2650(6), b = 12.408(2), c = 14.529(2) Å, $\beta = 96.35(1)^\circ$, U = 1301.7(3) Å³, space group $P2_1/a$, Z = 4, $D_c = 1.461 \text{ g cm}^{-3}$, μ (Mo-K α) = 0.119 mm⁻¹, F(000) = 600. Crystallographic measurements were made at 293(2) K on a CAD-4 automatic four-circle diffractometer in the range 2.16 < θ < 23.92°. The solution of the structure (SHELX86) and refinement (SHELX93) converged to a conventional [*i.e.* based on 1410*F* data with $F_o > 4\sigma(F_o)$] $R_1 = 0.0404$ and $wR_2 = 0.1489$. Goodness of fit = 1.244.

Acknowledgements

We thank the EPSRC for a Quota studentship (to M. H.) and Dr J. G. McGinley for help with some of the syntheses.

References

- 1 W. G. Finnegan, R. A. Henry and R. Lofquist, J. Am. Chem. Soc., 1958, 80, 3908.
- 2 K. Sisido, K. Nabika, T. Isida and S. Kozima, *J. Organomet. Chem.*, 1971, **33**, 337.

- 3 M. Hill, M. F. Mahon, J. G. McGinley and K. C. Molloy, J. Chem. Soc., Dalton Trans., 1996, 835.
- 4 M. Hill, M. F. Mahon and K. C. Molloy, J. Chem. Soc., Dalton Trans., 1996, 1857.
- 5 A. Goodger, M. Hill, M. F. Mahon, J. McGinley and K. C. Molloy, J. Chem. Soc., Dalton Trans., 1996, 847.
- 6 S. Bhandari, M. F. Mahon and K. C. Molloy, J. Chem. Soc., Dalton Trans., 1999, 1951.
- 7 R. N. Butler, K. F. Quinn and B. Welke, J. Chem. Soc., Chem. Commun., 1992, 1481.
- 8 R. N. Butler, in *Comprehensive Heterocyclic Chemistry*, vol. 5, ed. K. T. Potts, series eds. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, p. 791.
- 9 R. L. Kieft, W. M. Peterson, G. L. Blundell, S. Horton, R. A. Henry and H. B. Jonassen, *Inorg. Chem.*, 1976, **15**, 1721.
- 10 N. E. Takach, E. M. Holt, N. E. Alcock, R. A. Henry and J. H. Nelson, J. Am. Chem. Soc., 1980, 102, 2968.
- 11 T. Isida, T. Akiyama, K. Nabika, K. Sisido and S. Kozima, *Bull. Chem. Soc. Jpn.*, 1973, 46, 2176.
- 12 W. Reid and S. Aboul-Fetouh, Tetrahedron, 1988, 44, 3399.
- 13 W. Reid, C.-H. Lee and J. W. Bats, Liebigs Ann. Chem., 1989, 497.
- 14 R. N. Butler and A. F. M. Fleming, J. Heterocycl. Chem., 1997, 34, 691.
- 15 K. Freudenberg, H. Eichel and F. Leutert, Chem. Ber., 1932, 65, 1183.
- 16 R. Huisgen, C. Axen and H. Seil, Chem. Ber., 1965, 98, 2966.
- 17 S. Bhandari, M. F. Mahon and K. C. Molloy, unpublished results. 18 K. C. Molloy, T. G. Purcell, K. Quill and I. Nowell, *J. Organomet.*
- Chem., 1984, 267, 237.
 19 G. M. Sheldrick, in 'SHELX 86, A Computer Program for Crystal Structure Determination', University of Gottingen, Gottingen, 1986
- 20 G. M. Sheldrick, in 'SHELX 93, A Computer Program for Crystal Structure Refinement', University of Gottingen, Gottingen, 1993.
- 21 P. McArdle, J. Appl. Crystallogr., 1995, 28, 65.

Paper 9/05336K